Recall: Curvature is

$$
\mathrm{K}=\left|\frac{d \stackrel{\rightharpoonup}{\boldsymbol{T}}}{d s}\right|=\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t) \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|^{3}}
$$

Entry Task: $f(x)=x^{2}-6 x$ At what point (x, y, z) is the curvature maximum?

2D Curvature:

For, $y=f(x)$, we form:

$$
\begin{aligned}
\boldsymbol{r}(x) & =\langle x, f(x), 0\rangle . \\
\boldsymbol{r}^{\prime}(x) & =\left\langle 1, f^{\prime}(x), 0\right\rangle \\
\boldsymbol{r}^{\prime \prime}(x) & =\left\langle 0, f^{\prime \prime}(x), 0\right\rangle \\
\left|\boldsymbol{r}^{\prime}(x)\right| & =\sqrt{1+\left(f^{\prime}(x)\right)^{2}} \\
\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime} & =\left\langle 0,0, f^{\prime \prime}(x)\right\rangle
\end{aligned}
$$

$$
K(x)=\frac{\left|\boldsymbol{r}^{\prime} \times \boldsymbol{r}^{\prime \prime}\right|}{\left|\boldsymbol{r}^{\prime}\right|^{3}}=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+\left(f^{\prime}(x)\right)^{2}\right)^{3 / 2}}
$$

13.4 Position, Velocity, Acceleration

 If $\boldsymbol{t}=\boldsymbol{t i m e}$ and position is given by$$
\boldsymbol{r}(t)=\langle x(t), y(t), z(t)\rangle
$$

then

$$
\begin{aligned}
\boldsymbol{r}^{\prime}(t)= & \lim _{h \rightarrow 0} \frac{\boldsymbol{r}(t+h)-\boldsymbol{r}(t)}{h} \\
& =\frac{\text { change in position }}{\text { change in time }} \\
& =\text { velocity }=\boldsymbol{v}(t)
\end{aligned}
$$

$$
\left|\boldsymbol{r}^{\prime}(\boldsymbol{t})\right|=\frac{\text { change in dist }}{\text { change in time }}=\text { speed }=\frac{\mathrm{ds}}{\mathrm{dt}}
$$

$$
\boldsymbol{r}^{\prime \prime}(t)=\lim _{h \rightarrow 0} \frac{\boldsymbol{r}^{\prime}(t+h)-\boldsymbol{r}^{\prime}(t)}{h}
$$

$$
=\frac{\text { change in velocity }}{\text { change in time }}
$$

$$
=\text { acceleration }=\boldsymbol{a}(t)
$$

Example: Let t be time in seconds and assume the position of an object (in feet) is given by $\boldsymbol{r}(t)=\left\langle t, 2 e^{-t}, 0\right\rangle$ Compute $\boldsymbol{r}^{\prime}(t),\left|\boldsymbol{r}^{\prime}(t)\right|$, and $\boldsymbol{r}^{\prime \prime}(t)$ and $\boldsymbol{r}^{\prime}(0),\left|\boldsymbol{r}^{\prime}(0)\right|$, and $\boldsymbol{r}^{\prime \prime}(0)$.

HUGE application:

Modeling ANY motion problem.

Newton's $2^{\text {nd }}$ Law of Motion states
Force $=$ mass \cdot acceleration

$$
\begin{gathered}
\boldsymbol{F}=m \cdot \boldsymbol{a}, \text { so } \\
\boldsymbol{a}=\frac{1}{m} \cdot \boldsymbol{F}
\end{gathered}
$$

HW Example: An object of mass 10 kg is being acted on by the force

$$
\boldsymbol{F}=\left\langle 130 t, 10 e^{t}, 10 e^{-t}\right\rangle
$$

You are given

$$
\boldsymbol{v}(0)=\langle 0,0,1\rangle \text { and } \boldsymbol{r}(0)=\langle 0,1,1\rangle
$$

Find the position function.

If $\boldsymbol{F}=\langle 0,0,0\rangle$, then all the forces 'balance out' and the object has no acceleration. (Velocity will remain constant)

If $\boldsymbol{F} \neq\langle 0,0,0\rangle$, then acceleration will occur, and we integrate (or solve a differential equation) to find velocity and position.

That is how we can model ALL motion problems!

Measuring and describing acceleration

Recall: $\operatorname{comp}_{\boldsymbol{b}}(\boldsymbol{a})=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\boldsymbol{b}}=$ length.

We define the tangential and normal components of acceleration by:
$a_{T}=\operatorname{comp}_{\boldsymbol{T}}(\boldsymbol{a})=\boldsymbol{a} \cdot \boldsymbol{T}=$ tangential
$a_{N}=\operatorname{comp}_{\boldsymbol{N}}(\boldsymbol{a})=\boldsymbol{a} \cdot \boldsymbol{N}=$ normal

For computing use,

$$
a_{T}=\frac{\stackrel{\rightharpoonup}{\boldsymbol{r}}^{\prime} \cdot \overrightarrow{\boldsymbol{r}}^{\prime \prime}}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|} \text { and } a_{T}=\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime} \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|}
$$

For interpreting use,
$a_{T}=v^{\prime}=\frac{d}{d t}\left|r^{\prime}(t)\right|=$ "deriv. of speed"
$a_{N}=k v^{2}=$ curvature $\cdot(\text { speed })^{2}$

Example:

$$
\overrightarrow{\boldsymbol{r}}(t)=<\cos (t), \sin (t), t\rangle
$$

Find the tangential and normal components of acceleration.

Deriving interpretations:
Note that: $\boldsymbol{a}=a_{T} \boldsymbol{T}+a_{N} \boldsymbol{N}$
Let $v(t)=|\overrightarrow{\boldsymbol{v}}(t)|=$ speed.

1. $\overrightarrow{\boldsymbol{T}}(t)=\frac{\overrightarrow{\vec{r}}^{\prime}(t)}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}=\frac{\overrightarrow{\boldsymbol{v}}(t)}{v(t)}$ implies $\overrightarrow{\boldsymbol{v}}=v \overrightarrow{\boldsymbol{T}}$.
2. $\kappa(t)=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}\right|}{v(t)}$ implies $\left|\overrightarrow{\boldsymbol{T}}^{\prime}\right|=\kappa v$.
3. $\stackrel{\rightharpoonup}{\boldsymbol{N}}(t)=\frac{\overline{\boldsymbol{T}}^{\prime}(t)}{\left|\overline{\boldsymbol{T}}^{\prime}(t)\right|}=\frac{\overline{\boldsymbol{T}}^{\prime}}{\kappa v}$ implies $\overrightarrow{\boldsymbol{T}}^{\prime}=\kappa v \overrightarrow{\boldsymbol{N}}$.

Differentiating the first fact above gives

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{a}}=\overrightarrow{\boldsymbol{v}}^{\prime}=v^{\prime} \overrightarrow{\boldsymbol{T}}+v \overrightarrow{\boldsymbol{T}}^{\prime}, \text { so } \\
& \overrightarrow{\boldsymbol{a}}=\overrightarrow{\boldsymbol{v}}^{\prime}=v^{\prime} \overrightarrow{\boldsymbol{T}}+k v^{2} \overrightarrow{\boldsymbol{N}} .
\end{aligned}
$$

Conclusion:
$a_{T}=v^{\prime}=\frac{d}{d t}\left|r^{\prime}(t)\right|=$ "deriv. of speed"
$a_{N}=k v^{2}=$ curvature $\cdot(\text { speed })^{2}$

